Table of Contents
Simpson’s 1/3 rule
In Simpson’s 1/3 rule the interval [a, b] is divided into two equal sub-intervals by the points x0, x1, x2, where h = (b- a)/2 and x2 = x1 +h.
In the previous article we generate Trapezoidal Rule from the general integration formula based on Newton’s forward interpolation formula
\[\int_{a}^{b}{f\left( x \right)dx}=nh\left[ {{y}_{0}}+\frac{n}{2}\Delta {{y}_{0}}+\frac{2{{n}^{2}}-3n}{12}{{\Delta }^{2}}{{y}_{0}}+\frac{{{n}^{3}}-4{{n}^{2}}+4n}{24}{{\Delta }^{3}}{{y}_{0}}+…. \right]……..(1)\]
Simpson’s 1/3 rule is obtained by putting n = 2 in (1). In this case, the third and higher order differences do not exist.
\[\int_{a}^{b}{f\left( x \right)dx}=\int_{{{x}_{0}}}^{{{x}_{n}}}{f\left( x \right)dx}=2h\left[ {{y}_{0}}+\Delta {{y}_{0}}+\frac{1}{6}{{\Delta }^{2}}{{y}_{0}} \right]\]
\[\Rightarrow \int_{a}^{b}{f\left( x \right)dx}=2h\left[ {{y}_{0}}+\left( {{y}_{1}}-{{y}_{0}} \right)+\frac{1}{6}\left( {{y}_{2}}-2{{y}_{1}}+{{y}_{0}} \right) \right]\]
\[\therefore \int_{a}^{b}{f\left( x \right)dx}=\frac{h}{3}\left[ {{y}_{0}}+4{{y}_{1}}+{{y}_{2}} \right]\]
The above rule is known as Simpson’s 1/3 rule or simply Simpson’s rule.
Composite Simpson’s 1/3 rule
Let the interval [a, b] be divided into n (an even number) equal sub-intervals by the points x0, x1, x2, …, xn, where xi = x0 + ih, i = 1, 2, …, n. Then
\[\int_{a}^{b}{f\left( x \right)dx}=\int_{{{x}_{0}}}^{{{x}_{2}}}{f\left( x \right)dx}+\int_{{{x}_{2}}}^{{{x}_{4}}}{f\left( x \right)dx}+….+\int_{{{x}_{n-2}}}^{{{x}_{n}}}{f\left( x \right)dx}\]
\[=\frac{h}{3}\left[ {{y}_{0}}+4{{y}_{1}}+{{y}_{2}} \right]+\frac{h}{3}\left[ {{y}_{2}}+4{{y}_{3}}+{{y}_{4}} \right]+….+\frac{h}{3}\left[ {{y}_{n-2}}+4{{y}_{n-1}}+{{y}_{n}} \right]\]
\[=\frac{h}{3}\left[ {{y}_{0}}+4\left( {{y}_{1}}+{{y}_{3}}+…+{{y}_{n-1}} \right)+2\left( {{y}_{2}}+{{y}_{4}}+…+{{y}_{n-2}} \right)+{{y}_{n}} \right]\]
This formula is known as Simpson’s 1/3 composite rule for numerical integration.
Error in Simpson’s 1/3 rule
The error committed in the formula is given by
\[{{E}_{1}}=\int_{{{x}_{0}}}^{{{x}_{2}}}{f\left( x \right)dx}-\frac{h}{3}\left[ {{y}_{0}}+4{{y}_{1}}+{{y}_{2}} \right]\simeq -\frac{1}{90}{{h}^{5}}{{f}^{iv}}\left( {{x}_{0}} \right)\]
which is the error in the interval [x0, x2].
The total error committed in composite Simpson’s 1/3 rd rule is given by
\[E\simeq -\frac{1}{90}{{h}^{5}}\frac{n}{2}{{f}^{iv}}\left( \xi \right)=-\frac{b-a}{180}{{h}^{4}}{{f}^{iv}}\left( \xi \right),{{x}_{0}}<\xi <{{x}_{n}},\left( \because b=a+nh \right)\]
where ξ is the point having largest value of the fourth order derivatives, and since the number of sub-intervals is n/2.
Algorithm of Simpson’s 1/3 rule
Step 1. Start; Step 2. Input function f(x); Step 3. Read a,b,n; // the lower and upper limits and number of sub-intervals Step 4. Compute h=(b-a)/n; Step 5. Sum = [f(a)-f(a+nh)]; Step 6. for i=1 to n-1 step 2 do Compute sum = sum + 4*f(a+ih)+2*f(a+(i+1)h); endfor; Step 7. Compute result = sum * h/3; Step 8. Print result; Step 9. Stop;
Simpson’s 1/3 rule implementation in C
/* Program Simpson’s 1/3 rule Program to find the value of integration of a function f(x) using Simpson’s 1/3 rule. Here we assume that f(x) = x^3. */ #include<stdio.h> void main() { float f(float); float a,b,h,sum; int i,n; printf("Enter the values of a,b: "); scanf("%f%f",&a,&b); printf("Enter the value of n: "); scanf("%d",&n); if(n%2!=0) { printf("\nNumber of subdivision should be even"); exit(0); } h=(b-a)/n; sum = f(a)-f(a+n*h); for(i=1;i<n;i++) sum += 4*f(a+ih)+2*f(a+(i+1)*h); sum *= h/3; printf("\nValue of the integration is %f",sum); } float f(float x) { return(x*x*x); }
Output
Enter the values of a, b: 0 1
Enter the value of n: 100
Value of the integration is 3.750000
Example 01 |
Find the value of
\[\int_{1}^{5}{{{\log }_{10}}xdx}\]
Taking 8 sub-intervals, correct up to four decimal places by Simpson’s 1/3rd rule.
Solution:
\[Let~~f\left( x \right)={{\log }_{10}}x\]
\[Here~~{{x}_{0}}=1,~~{{x}_{n}}=5,~~n=8\]
\[\therefore h=\frac{{{x}_{n}}-{{x}_{0}}}{n}=\frac{5-1}{8}=0.5\]
The tabulated values of f(x) for different values of x are given below,
x | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 |
f(x) | 0 | 0.17609 | 0.30103 | 0.39794 | 0.47712 | 0.54407 | 0.60206 | 0.65321 | 0.69897 |
By Simpson’s 1/3rd rule, we have,
\[\int_{a}^{b}{f\left( x \right)dx}=\frac{h}{3}\left[ {{y}_{0}}+4\left( {{y}_{1}}+{{y}_{3}}+{{y}_{5}}+{{y}_{n7}} \right)+2\left( {{y}_{2}}+{{y}_{4}}+{{y}_{6}} \right)+{{y}_{8}} \right]\]
\[\therefore \int_{1}^{5}{{{\log }_{10}}xdx}=\frac{0.5}{3}[0+4\left( 0.17609+0.39794+0.54407+0.65321 \right)\]
\[+2\left( 0.30103+0.47712+0.60206 \right)+0.69897]\]
\[\therefore \int_{1}^{5}{{{\log }_{10}}xdx}=1.75744\simeq 1.7574\]
Correct upto four decimal places.
Example 02 |
Find the value of
\[\int_{1.2}^{1.6}{\left( x+\frac{1}{x} \right)dx}\]
Taking 4 sub-intervals, correct up to four significant figures.
Solution:
\[Let~~f\left( x \right)=\left( x+\frac{1}{x} \right)\]
\[Here~~{{x}_{0}}=1.2,~~{{x}_{n}}=1.6,~~n=4\]
\[\therefore h=\frac{1.6-1.2}{4}=0.1\]
The tabulated values of f(x) for different values of x are given below:
x | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 |
f(x) | 2.033333 | 2.069231 | 2.114286 | 2.166667 | 2.225 |
By Simpson’s 1/3rd rule, we have,
\[\int_{a}^{b}{f\left( x \right)dx}=\frac{h}{3}\left[ {{y}_{0}}+4\left( {{y}_{1}}+{{y}_{3}} \right)+2\left( {{y}_{2}} \right)+{{y}_{4}} \right]\]
\[\int_{1.2}^{1.6}{\left( x+\frac{1}{x} \right)dx}=\frac{0.1}{3}\left[ 2.033333+4\left( 2.069231+2.166667 \right)+2\left( 2.114284 \right)+2.225 \right]\]
\[\therefore \int_{1.2}^{1.6}{\left( x+\frac{1}{x} \right)dx}=0.847683\simeq 0.8477\]
;